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Abstract. Block clustering and seriation reveal the underlying structure of ecological
data structures by rearranging the rows and the columns of the data table or data matrix,
usually representing species and sample sites, respectively. Classical approaches to this
problem rely upon a goodness criterion optimized through an iterative algorithm or utilize
a simultaneous classification or ordination of species and sites. The new procedure intro-
duced here does not strive for a single optimal rearrangement. Instead, it generates a series
of probability distributions, the Boltzmann distributions, for a large set of solutions that
include both the optimal and suboptimal solutions. The procedure is governed by a hy-
pothetical parameter, T, called the ‘‘temperature.’’ For the value of zero, only the best
rearrangements (if there are many) have nonzero probabilities. As the value of this parameter
increases, less optimal rearrangements become more frequent in the associated series of
distributions. When T approaches infinity, the distribution becomes uniform over all the
possible matrix rearrangements. We propose a Markov chain Monte Carlo (MCMC) method
which converges reasonably fast to this distribution for any value of T. This chain provides
a sample of matrices that can be characterized via several statistics based on the Boltzmann
distribution.

The relevance of the method is demonstrated using ecological data. We illustrate how
much extra information can be gained from suboptimal solutions that may have biological
meaning not revealed by the best solution. Although the objective is to give a distribution
of solutions rather than a single optimal solution, the new method can actually outperform
heuristic searching algorithms in finding the best arrangement.

We provide source code for the MCMC method in the C language, which can be compiled
under many operating systems (Windows, Linux/Unix, Macintosh OS) and used in command
line mode. The Linux/Unix version operates in interactive mode, it gives a graphical output
of the results, and is available as a web server interface in PHP 4.3, which can also be
installed on personal computers.
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INTRODUCTION

Multivariate data analysis has long been an integral
part of numerical ecology, with advantages and merits
treated in considerable detail in the literature (Digby
and Kempton 1987, Legendre and Legendre 1999).
Classification and ordination procedures provide re-
sults in the form of mathematical constructs such as
dendrograms or other forms of tree graphs and scatter
diagrams including biplots and triplots (Lepš and Šmi-
lauer 2003). In addition, there are procedures that op-
erate directly on the raw data matrices by rearranging
their rows and columns (usually representing species
and sites, respectively) to emphasize and optimally vi-
sualize underlying data structures (Podani 2000). The
rearranged data may then speak for themselves and may
represent valuable alternatives to mathematical objects,
such as trees and ordinations. Fig. 1 illustrates the ma-
jor possibilities of this approach. Block clustering
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methods explore the data matrix for the presence of
distinguishable and homogeneous data blocks, whereas
seriation places emphasis on mutually optimal order-
ings of rows and columns. A hybrid procedure, called
block seriation, places data blocks along the diagonal
of the matrix to facilitate reciprocal gradient inter-
pretability of species and site groups. Interpretation of
the rearranged data matrix is usually enhanced by shad-
ing, that is, the original values are categorized and these
categories are depicted in different shades from white
to black (McIntosh 1978). Algorithms for matrix re-
arrangement utilize a statistical criterion that may be
either global (for example, sum of squares or chi
square, see Feoli and Orlóci [1978], Podani and Feoli
[1991]) or based on some local properties such as the
dissimilarities/distances between neighboring rows or
columns. Optimization of these measures of goodness
of data block homogeneity (block sharpness) or of ser-
iation represents the core of matrix rearrangement al-
gorithms.

Finding the optimal solution of matrix rearrangement
is not a simple task. Many problems in this field are
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FIG. 1. Main types of matrix rearrangement and shading problems: (a) unconstrained and (b) partial block clustering, (c)
cross partitioning, (d) block seriation, and (e) seriation of raw data. Shading reflects within-block homogeneity (a–d) or
deviation from 0 (e). The figure is modified from Podani (2000), with permission from Backhuys Publishers, Leiden, The
Netherlands.

NP-complete, an epithet referring to the mathematical
fact that there is no algorithm to find the optimum in
a reasonable time for practical problem sizes. Heuristic
greedy approximations can be used instead, but one
can never be sure that the optimum has been found,
even after thousands of runs of the searching algorithm.
Even if an optimal solution is obtained, it may happen
that the optimum is not unique and the alternatives
remain undetected. Furthermore, the optimum-oriented
approach deliberately neglects suboptimal solutions
that might be just as informative biologically as the
optimal ones. We feel that examination of the distri-
bution of results produced by many runs of the greedy
algorithm offers a more flexible approach to the prob-
lem and is more exhaustive than searching for absolute
optima. This was first suggested by Podani and Feoli
(1991), who examined the frequency distribution of
global and local optima in the case of iterative block
clustering procedures via cross partitions (Fig. 1c).
However, such a distribution of results is greatly influ-
enced by the greedy strategy and is not suitable for
statistical characterization because different greedy
strategies yield practically incomparable distributions.

In this paper, we suggest a new approach to inves-
tigate data structuring. We define a continuous series
of Boltzmann distributions of matrix rearrangements.
These distributions have a hypothetical ‘‘temperature’’
parameter. At zero temperature, the distribution is uni-
form for the optimal matrix rearrangements (if there is
more than one). With increasing temperatures, less op-
timal solutions have larger and larger probabilities of
occurring and, eventually, on infinitely high tempera-
tures, the distribution becomes uniform over all the
possible matrix rearrangements. We sample from these
distributions through a Markov chain Monte Carlo
technique (MCMC; Liu 2001). In this, a very long se-
quence of matrices is generated by randomly modifying
the matrix from one step to the other. The general the-
orem of MCMC guarantees that the chain is always

forced to converge to the prescribed distribution irre-
spective of the nature of random modifications. This is
an essential difference between MCMC and naı̈ve ran-
domization approaches. In particular, a matrix is re-
tained with a given probability in the series even if the
random modification deteriorates the goodness crite-
rion, whereas greedy strategies are forced to improve
the result as much as possible in every step.

This paper is concerned with the unconstrained block
clustering and seriation approaches (Fig. 1a and e). For
unconstrained block clustering, we define the optimal-
ity criterion based on the absolute differences between
neighboring rows and columns. Furthermore, between-
column and between-row similarity indices are pro-
posed for characterizing the distribution sampled. An
ecological example is used to demonstrate that several
optimal solutions may exist simultaneously, and that
statistics based on a sample from optimal solutions
(statistics on zero temperature) are more informative
than a single optimal solution. Also, statistics based on
higher temperatures, i.e., those derived from samples
involving suboptimal solutions, reveal useful infor-
mation that cannot be obtained from optimal solutions.
We demonstrate the utility of plexus graphs in sum-
marizing and visualizing the between-column and be-
tween-row relationships in the actual set of solutions.

To show the general applicability of our approach,
we also considered the seriation problem. In this case,
the optimality criterion is defined based on the Rob-
inson property (Robinson 1951). Here, the Boltzmann
distribution of matrix rearrangements is informative of
the probability of a species or a site to occur in a given
row or column, respectively, which cannot be displayed
via plexus graphs. Therefore, we introduce another ef-
ficient visualization technique, the distance distribution
of rows and columns. We also show that the new meth-
od outperforms greedy algorithms described earlier
(Podani 1994). It is in accordance with the well-known
fact that MCMC-based stochastic search, known as
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simulated annealing, is usually superior to greedy op-
timization (Aarts and Korst 1989).

METHODS

Energy of a matrix

Various optimality criteria have been suggested to
achieve different matrix rearrangement objectives
(Hartigan 1975, Podani 2000, and references therein).
A measure of the goodness of rearrangement is called
here the energy function, denoted by Ep and Cp for
matrix rearrangement p in case of unconstrained block
clustering and seriation, respectively. The probability
distribution of matrix rearrangements is defined via
their energy (see The Boltzmann distribution of matrix
rearrangements). In this distribution, ‘‘better’’ config-
urations have greater probability and ‘‘worse’’ rear-
rangements have lesser probability. Any appropriate
energy function must have the following properties.
First, energy is inversely proportional to the goodness
of rearrangement. This ensures that the better a given
solution, the greater the probability of the matrix (Kirk-
patrick et al. 1983). In addition, we propose that the
energy function should be scale independent. This en-
sures that multiplying every entry in the matrix by a
scalar does not change the distribution.

In this paper, we use two energy functions, one for
unconstrained block clustering and the other for ser-
iation, as described in the following sections.

A criterion for unconstrained block clustering.—
Here, the objective of matrix rearrangement is to con-
centrate large data values into any number of blocks
of any size and shape, thus visualizing the mutual re-
lationships of variables and objects in terms of maxi-
mally homogeneous clusters of numbers. For this pur-
pose, we suggest using the sum of the sum of absolute
differences between neighboring rows and between
neighboring columns as the optimality criterion. The
fact that this measure considers only local properties
of the matrix makes it suitable for concentrating large
values into unconstrained blocks. As a starting point
in deriving a goodness measure, let us consider the sum
of absolute differences (Manhattan distances) between
neighbors, given by the formula

E 5 zx 2 x zO Op p(i, j) p(i, j11)
1#i#m 1#j#n21

1 zx 2 x z (1)O O p(i, j) p(i11, j)
1#i#m21 1#j#n

where p(i, j) denotes the ith row and jth column in the
rearranged matrix. This measure, however, suffers from
the imbalance that rows and columns on the border of
the matrix receive less emphasis than those within the
matrix, a phenomenon called the border effect.

Border effect.—Each entry inside the data matrix has
four neighbors, the entries at the border have three, and
those at the corners have only two. Since we define the
energy of a matrix in terms of Manhattan distances
from four neighbors, entries at the border require spe-

cific treatment to compensate for the fewer number of
comparisons. In addition to the case without any cor-
rection (a), we can choose from three solutions (b–d)
for correcting the border effect and thus facilitating
four comparisons for all positions.

a) Disregard borders. We do only three or two com-
parisons for border entries as implied by Eq. 1, thus
forgetting about the entire problem. This method tends
to place high values to the border of the matrix, es-
pecially if it is hard to find similar neighbors for these
values.

b) Zero-frame. The matrix is surrounded by a frame
of 0 values. These zeros are fixed, i.e., no rearrange-
ment can remove them from these positions. Since bor-
der values are compared with zeros, this solution tends
to move small values to the border.

c) Torus. The first and the last rows are treated as
neighbors, just like the first and the last columns. This
way we indirectly assume the presence of a cyclic gra-
dient in both ways, which is usually not the case.

d) Mirror. We define a frame as being equal to the
second and the penultimate rows and columns. This
method implies double weighting of the distance be-
tween the boundary vectors and their neighbors which
seems reasonable, because these are the only proposed
neighbors of the bordering values.

The first three procedures are burdened by consistent
bias towards a particular type of result, as demonstrated
by the artificial examples of Fig. 2 as well. To the
contrary, in the mirror technique the different rear-
rangements will have different frames thus removing
the bias present in the previous procedures. Therefore,
the energy function (Eq. 1) is modified as follows:

E 5 zx 2 x zO Op p(i, j) p(i, j11)
1#i#m 1#j#n21

1 zx 2 x zO O p(i, j) p(i11, j)
1#i#m21 1#j#n

1 [ zx 2 x z 1 zx 2 x z ]O p(1, j) p(2, j) p(m21, j) p(m,j)
1#j#n

1 [zx 2 x z 1 zx 2 x z ]. (2)O p(i,1) p(i,2) p(i,n21) p(i,n)
1#i#m

The above criterion can be used in the optimization of
rearrangements of a given matrix. However, this is af-
fected by the scale on which the actual data are mea-
sured and energy values obtained for different matrices
cannot be compared. To resolve this problem, Ep can
be divided by the average absolute differences between
neighbors,

zx 2 x z 1 zx 2 x zO O O Oi,k i,l i,k j,k
1#i#m 1#k,l#n 1#k#n 1#i,j#m

av 5X
n m

m 1 n1 2 1 22 2
(3)

where xi,k is an entry of the m 3 n matrix X being
analyzed. In this way, we have derived a measure which
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FIG. 2. Two small artificial data matrices (left) and the most optimal solutions obtained by four different methods of
border effect correction.

satisfies the two fundamental requirements for an en-
ergy function.

A seriation criterion.—The classical seriation prob-
lem (Kendall 1970, 1971) is to find a simultaneous
ordering (or permutation) of the rows and the columns
of the data matrix with the objective of revealing a
background one-dimensional gradient. The basic idea
is that large scores should be concentrated around the
main diagonal as closely as possible, whereas low val-
ues should fall as far from it as possible. This goal is
best achieved by considering the so-called Robinson
property (Robinson 1951). A matrix is said to have this
property if its values decrease monotonically in the
rows and the columns when moving away from the
main diagonal in both directions. To express deviation
from this perfect state numerically, Podani (1994) sug-
gested the following energy function:

m n n 3 i m 3 j
C 5 x 2 j 1 2 i . (4)O Op p(i j) ) ) ) )[ ]m ni51 j51

In this formula, each data entry is weighted by the sum
of its positional differences from the diagonal, i.e., the
number of rows and columns through which the value
has to be moved to reach the diagonal. This weight is
not an integer in most situations. An advantage of Eq.
4 is that no border effect is present. To achieve scale
independence, Cp can also be divided by the sum of
entries in the matrix, so that both requirements are met.

The Boltzmann distribution of matrix rearrangements

The classical optimality requirement for matrix re-
arrangement is to minimize the energy value. In Ap-
pendix A, we show that this problem is NP-complete

at least for the unconstrained case, therefore there is
no fast algorithm which always finds the best solution
unless P 5 NP (that is, unless a universal algorithm
exists which quickly solves a very large set of com-
putationally hard problems). No such universal algo-
rithm has been constructed so far. Mathematicians tend
to believe that such an algorithm does not exist at all,
although no proof has been given to confirm this view.

Instead of finding a single optimal solution, we de-
fine the so-called Boltzmann distribution (see for ex-
ample, Liu 2001) of matrix rearrangements based on
the energy function E or C as

2E /T 2C /Tp pP (p) } e or P (p) } e (5)T T

where PT denotes the probability density function (pdf)
for temperature T and } means ‘‘proportional to.’’ We
cannot calculate analytically the normalizing constant
for PT; and we shall show later that it is not necessary
anyway for sampling from PT(p). The temperature T
introduced here does not have any biological meaning,
but we can describe its qualitative effect. In the Boltz-
mann distribution, the probability of worse rearrange-
ments decreases exponentially, and on temperature T
5 1/ln(k), a rearrangement whose energy is one unit
larger than the optimal rearrangement is k times less
probable than the optimal rearrangement. When T →
0 or, equivalently, when k → `, only the minimum
energy rearrangements have nonzero probability, and
the distribution is the uniform one on these rearrange-
ments (if there are more than one). As T → ` (hence
k → 1), the distribution converges to the uniform dis-
tribution of all the possible matrix rearrangements. Ex-
perience suggests that a little above zero temperature,
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suboptimal solutions dominate the distribution; name-
ly, the distribution ‘‘melts’’ quickly.

Efficient characterization and visualization of results

There are m!n! different rearrangements for matrix
Xm,n. (If we consider a permutation equal to its reverse,
then the number of possible matrices reduces to n!m!/
4, but this does not influence the subsequent discus-
sion.) Although most of these rearrangements have a
negligible probability on small temperatures, the num-
ber of good candidates may be still too large. Some
subsequent analysis is needed to facilitate joint eval-
uation of these alternative results which efficiently
compresses the information carried by them. It is a
natural attempt to characterize the distribution of ma-
trices based on the optimization criterion. Therefore,
we develop statistics capturing the goodness of neigh-
borhoods of columns and rows for the block clustering
solutions, as well as statistics estimating the probability
of a species or a site to occur at a given distance from
the middle of the matrix for the seriation results.

Similarity of neighboring rows or columns: creating
a plexus graph.—We introduce indices of similarity
between pairs of rows and between pairs of columns.
These measures will be useful in summarizing uncon-
strained block clustering results in form of a plexus
graph. Let rp(i, j) denote the row neighbor-indicator
function, which is 1 if rows i and j of the original matrix
are neighbors in the matrix rearrangement p, otherwise
it is 0. Similarly, cp(k, l) 5 1 if columns k and l of the
data matrix are neighbors in the matrix rearrangement
p, otherwise this function yields 0. The similarity of
rows i and j at temperature T is defined as the proba-
bility that these two rows are neighbors in the distri-
bution PT, and is given by the following function:

Sr (i, j ) 5 P (p)r (i, j ). (6)OT T p
p

In an analogous manner, the similarity of columns k
and l at temperature T is defined as

Sc (k, l) 5 P (p)c (k, l). (7)OT T p
p

Note that the values of these indices range from 0 to
1, since they are probabilities. A value of 0 means that
the two rows or columns in question are never neigh-
bors in matrices that have nonzero probability in the
distribution, while 1 means that they are always neigh-
bors.

We can characterize a distribution at a given tem-
perature with two plexus graphs with vertices repre-
senting species in the first one and sites in the second
one. Two vertices are connected if the similarity be-
tween the corresponding species or sites exceeds a giv-
en threshold. A more elaborate approach involves use
of edges of different thickness to indicate the similarity
level (cf. McIntosh 1978). To facilitate easy compar-
ison, we draw the vertices along a circle and fix their

order as one of the permutations obtained in a matrix
rearrangement with the smallest energy value. This
choice is arbitrary if there are several optimal solutions.

Characterizing the Boltzmann distribution for the
seriation criterion.—Let us now define the center of a
data matrix Xm,n as being the position m/2,n/2 which
may be actually a value for odd values of both m and
n, or a position between values otherwise. It is easy to
see that the energy function given by Eq. 4 is invariant
for mirroring the matrix on its center. Therefore, the
relevant information is how far a row or column is from
the center of the matrix in a given rearrangement. Let
rdp(i, d ) denote the row-distance indicator function,
which is 1 if row i is d positions away from the center
of the matrix in rearrangement p, otherwise rdp(i, d )
5 0. Similarly, let cdp(i, d ) denote the column-distance
indicator function. We can define the distance proba-
bility distribution of row i on temperature T:

Prd (i, d) 5 P (p)rd (i, d) (8)OT T p
p

where PrdT (i, d ) is the probability that row i is d po-
sitions far from the center of the matrix in the Boltz-
mann distribution on temperature T. Similarly we can
define the distance probability distribution of column
j on temperature T:

Pcd ( j, d) 5 P (p)cd ( j, d). (9)OT T p
p

These distributions for all rows or all columns can be
plotted in a three-dimensional diagram. The row or
column indices of the original matrix are shown on the
x-axis, in an order based on an optimal rearrangement.
Due to the mirror invariance discussed above, pairs of
rows or columns being from the same distance from
the center of the matrix in the optimally rearranged
matrix are plotted next to each other, namely, the first
and last rows or columns are neighbors, etc. The y-axis
is for the distances measured from the center of the
matrix, and we measure the probabilities PrdT (i, d ) or
PcdT ( j, d ) on the z-axis. If this optimal rearrangement
had probability 0.5 in the Boltzmann distribution
(hence its mirror had the other 0.5), we could see a
straight diagonal distribution on this chart. Deviations
from the diagonal reveal the possibility of alternative
rearrangements in the Boltzmann distribution.

The Markov chain Monte Carlo method

The only remaining question is how to obtain the
Boltzmann distribution. Since m!n! is an exceedingly
high number even for moderate problem sizes, brute
force calculation is not feasible. Therefore, we suggest
estimating the distribution and the derived similarity
indices through sampling from the distribution PT using
a Markov chain Monte Carlo (MCMC) method. In
MCMC, it is unnecessary to determine the probability
density function exactly (Liu 2001), which would only
be possible if the normalizing constant were known.
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Therefore, the formula in Eq. 5 is indeed sufficient for
the purpose.

The simulations start from a random permutation of
rows and columns. In each step, a part of the permu-
tation for the actual rearrangement pold is perturbed to
create a proposal, pnew. When the Boltzmann distri-
bution is defined using the unconstrained block clus-
tering criterion, a random part of the permutation is
inverted. The starting and the last elements of this in-
version are determined randomly, and the decision
whether this is done with the rows or the columns is
also random. Inversion is illustrated by the example
below:

1 4 3 6 5 8 2 9 7 → 1 4 8 5 6 3 2 9 7

in which we inverted the section [3 6 5 8]. It has been
shown (e.g., Cameron 1999) that, for permutations lon-
ger than three, such operations provide an ergodic chain
on all the possible permutations, a fundamental re-
quirement for Markov chain Monte Carlo methods (Liu
2001). For the seriation criterion, pnew is obtained by
swapping two randomly chosen, not necessarily neigh-
boring columns or rows. These moves define an irre-
ducible but periodic Markov chain (only an even num-
ber of moves can cancel each others’ effect out [Cam-
eron 1999]). This means that the primary chain thus
defined is not ergodic. However, the probability for
rejecting a move is non-zero. Since rejection breaks
the periodicity, the final Markov chain will be ergodic.

To determine whether the newly proposed matrix is
retained in the chain we use the Metropolis ratio (Me-
tropolis et al. 1953, Liu 2001). For the energy function
E, this takes the following form

2Epnewexp1 2T
2DE/T5 e (10)

2Epoldexp1 2T

where DE 5 2 . For seriation, E is replacedE Ep pnew old

by C in the above formula. Then, a uniform random
number on (0, 1) is generated and pnew is retained if
this number is smaller than the above ratio. Otherwise,
pnew is rejected and the new member of the Markov
chain will be pold. This random choice on accepting or
rejecting pnew guarantees convergence to the predefined
distribution (Metropolis et al. 1953, Liu 2001). For
sampling from the Boltzmann distribution, we define
three arbitrary integers, B, I, and S. To eliminate au-
tocorrelation, we consider only every Ith matrix in the
sequence, whereas the number of such matrices is de-
fined as S. At the beginning, the first B matrices are
discarded to ensure convergence to the desired distri-
bution (known as the burn-in phase in the MCMC lit-
erature). Therefore, the total length of the Markov chain
is B 1 I 3 S, yielding a sample of S matrices.

The time complexity of matrix perturbation and the
associated computations is relatively low. For block

clustering, an inversion in the row permutation changes
only O(n) neighbor relationships, whereas an inversion
in the column permutation changes only O(m) neighbor
relationships. We do not need to rewrite matrix entries
themselves in the Markov chain, only the correspond-
ing permutations, therefore a sampling step requires
only O(n 1 m) computational time. In the case of ser-
iation, swapping two columns or two rows and cal-
culating the energy difference between the original and
the newly obtained matrix can also be performed in
O(n 1 m) time.

We would like to emphasize that the type of pertur-
bation does not affect the distribution to which the
Markov chain converges, only the speed of conver-
gence and mixing time are influenced. The reason for
introducing different moves for the two different cri-
teria is that mixing by inversions was found to be very
slow for the seriation criterion, while mixing was much
faster when matrices were perturbed with swapping
columns and rows. Nevertheless, calculating the energy
difference for inversion-based mixing in seriation
would take O(nm) time. That is, computational com-
plexity would be significantly greater than for mixing
via swapping.

Obviously, some of the proposals will be signifi-
cantly worse than the actual rearrangement, and they
will be accepted only with very small probability.
Therefore, a straightforward alternative strategy would
calculate the energy of all possible proposals available
from the actual rearrangement, and would propose the
best solutions with the highest probability. Such an
approach could be seen as the discrete version of Monte
Carlo updating method based on Langevin diffusion
(Roberts and Rosenthal 1998). This technique has been
successfully applied in other MCMC methods of ser-
iation (Buck and Sahu 2000). However, our empirical
results showed that our plain Metropolis-Hastings al-
gorithm has a better overall performance, due to avoid-
ing the high computational cost of inferring all possible
proposals in each step of the Markov chain.

DATA

The data set used to demonstrate the advantages of
using a distribution of solutions originates from veg-
etation samples collected for the comparison of three
floating island complexes, called sites. Two old floating
fens, developed by primary succession, and young
floating islands developed by secondary succession
were included. All the sites are located in Hungary.
One of the old floating fen complexes is in Lake Ve-
lencei (478109 N, 188329 E), the other one in several
adjoining oxbows of the smaller branch of the Danube
south of Budapest (488459 N, 198 E). The young floating
islands developed following artificial flooding of a for-
mer primary floating fen complex drained ca. 50 years
ago. The study site was located in the center of a sec-
ondary floating island formation (Ingó) within the shal-
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TABLE 1. Vegetation strata used in sampling.

Stratum
no. Name Dominant species Discriminating features

1 peat moss–willow scrub Sphagnum fimbriatum, Salix cinerea presence of Sphagnum fallax, Sphagnum
squarrosum, Thelypteris palustris

2 willow scrubs and lesser
reedmace beds

Salix cinerea and/or Typha angusti-
folia and Thelypteris palustris

absence of Sphagnum species

3 reed stands Phragmites australis presence of Solanum dulcamara, Eupato-
rium cannabinum

4 large sedge beds Carex pseudocyperus, Carex elata,
Carex riparia

presence of tall forb species (Bidens
cernuus and Rumex maritimus)

5 forb vegetation on mud-
dy surfaces

Bidens cernuus, Rumex maritimus,
Cyperus fuscus

presence of Chenopodium ficifolium, Epi-
lobium hirsutum, Veronica anagallis-
aquatica

low lake of Kis-Balaton (478309 N, 178109 E), situated
southwest of Lake Balaton.

At each site, the sampling design was stratified (Po-
dani 2000, Sheldon et al. 2002) over the dominant veg-
etation groups present in the floating fens to cover the
full variation and most of the potentially available gra-
dients. Several vegetation types distinguished by dom-
inant species or species groups were present in the area.
We used five strata (Table 1) which were based on these
species dominance patterns. Within each stratum, a
minimum of five 25-m2 quadrats were placed to esti-
mate percent cover of species (vascular plants, bryo-
phytes, and charophytes; Appendix C). To sum up, 31
quadrats were placed at Ingó, 41 in Lake Velencei, and
29 in the Danube oxbows. The full data matrix contains
78 species and 101 quadrats. For further details on the
study sites, strata, and data collection methods, consult
Somodi and Botta-Dukát (2004).

RESULTS

Unconstrained block clustering

Monte Carlo sequences of matrix rearrangements
were generated at 20 different temperatures, from T 5
0.001 to T 5 0.041. When the energy function after B
5 10 000 steps decreased to the fluctuating stage
(‘‘burn-in’’), we retained S 5 10 000 rearrangements,
and to diminish autocorrelation, there were I 5 10 000
steps in the Markov chain between two matrices that
were retained. This very exhaustive investigation could
be performed in less than 12 h on an Intel Pentium 4
2.0 GHz computer under a RedHat 8.0 operating sys-
tem. Here, we describe detailed results for two tem-
peratures. We chose the lowest investigated tempera-
ture, T 5 0.001, where most of the rearrangements have
the minimum energy. At the other temperature chosen,
T 5 0.017, suboptimal solutions already dominate the
Boltzmann distribution. At higher temperatures, only
the strongest connections remain in the plexus graph,
indicating that the Boltzmann distribution approaches
a uniform distribution (see supplementary information
in Appendix B containing a .gif movie of plexus graphs
for a temperature range from T 5 0.001 to T 5 0.041).

At temperature T 5 0.001, 9502 of the sampled ma-
trices had the smallest energy value (25 006). All these
smallest energy matrices were different. This confirms
good mixing of the Markov chain, and also shows that
there are numerous optimal rearrangements in this case.
We chose one of the optimal rearrangements (Fig. 3)
to define the order of species and quadrats in the plexus
graphs. The threshold of similarity (for Eqs. 6 and 7)
to be shown in the plexus graphs was set to be the
value exceeding 10 times the average similarity.

Most of the edges of the plexus graphs run around
the circle, reflecting that many neighbor relationships
correspond to a one-dimensional structure. However,
there are several edges connecting objects (species or
quadrats) which are not neighbors, and there are several
neighbors that are not connected. The former indicates
that in other optimal or suboptimal solutions these ob-
jects can be neighbors quite frequently, and the latter
means that although these objects are neighbors in this
particular solution, this neighborhood is only one pos-
sibility among other solutions. These observations are
in accordance with our biological knowledge, as dis-
cussed below.

Quadrats originating from the same sampling strata,
which were identified formerly as being representatives
of coherent vegetation types (see Somodi and Botta-
Dukát 2004), are mainly grouped along the circle. The
only exception is stratum 2, which is subdivided into
three groups according to minor dominance differences
(Fig. 4). Two of these subgroups can clearly be asso-
ciated with dense Salix cinerea scrubs, while the third
is characterized by lower willow cover and higher cov-
er of Thelypteris palustris. Reed stands with relatively
high proportion of Typha angustifolia were also divid-
ed from the main body of reed bed vegetation. These
finer distinctions were undetected by correspondence
analysis and were therefore disregarded when broad
vegetation types were identified (Somodi and Botta-
Dukát 2004).

Seven species groups of various size can be recog-
nized along the circle of the optimal arrangements of
species (Fig. 5). Most of these groups can be associated
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FIG. 3. An optimal rearrangement of aquatic vegetation data based on the unconstrained block-clustering criterion. The
y-axis shows species numbers as they appear in Appendix D. Symbols for sites: open triangles, peat moss–willow scrub;
solid triangles, willow scrubs and lesser reedmace beds; open squares, reed stands; solid squares, large sedge beds; asterisks,
forb vegetation on muddy surfaces. Shading is proportional to percent cover, from white (0%) to black (100%).

with a stratum, others with a site. This also helps to
differentiate between species characteristic of a certain
vegetation type and those characteristic of sites. The
peat moss–willow scrub, the tall forb community, the
dwarf mud vegetation (the last two are subtypes of the
vegetation type belonging to Stratum 5), and the large
sedge beds (Table 1) appear to have characteristic spe-
cies combinations. The Danube oxbows have a char-
acteristic set of species of their own, while reed stands
at Lake Velencei also seem to have a separate species
group. Floating species behave similarly, though they
can be associated with neither sites nor strata. It is
important to note that neither of these combinations is
based on the dominant species themselves. These com-
binations can be considered characteristic of the veg-
etation groups mentioned.

There are edges connecting species that are not
neighbors along the circle at the lowest temperature as
well. For example, in the optimal arrangement, Sphag-
num squarrosum belongs to the species characteristic
of the Danube oxbows, and is also linked to a group
characteristic of peat moss–willow scrubs.

When temperature is increased to T 5 0.017, the
plexus graph disintegrates because many similarity val-
ues fall below the threshold (Figs. 4b and 5b). At the
same time, at this temperature new edges appear that
did not show up at lower temperatures. A potential
reason behind this phenomenon is that there might be
several suboptimal rearrangements containing the same
pattern of neighbors. At low temperatures, the cumu-
lative probabilities for the high number of suboptimal
rearrangements are still smaller than the probability of
the optimal rearrangement(s). However, on higher tem-
perature, the difference between the probability of an
optimal and a suboptimal rearrangement is smaller, so
that the sum of probabilities of suboptimal rearrange-
ments may exceed the total for the optimal ones.

We can explain the appearance of new edges on bi-
ological grounds. In both the quadrat and the species
graphs, the new edges that appear on higher temper-
atures carry additional information. In the case of quad-
rats, for example, some of them from large sedge beds
are separated from the main group of large sedge bed
quadrats. If the optimal solution were examined only,
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FIG. 4. Plexus graphs of the quadrats at temperatures (a)
T 5 0.001 and (b) T 5 0.017. Quadrats are arranged based
on the optimal solution depicted in Fig. 3. See Table 1 for
numbering of quadrats.

FIG. 5. Plexus graph of the species at temperatures (a) T
5 0.001 and (b) T 5 0.017. Species are arranged based on
the optimal solution depicted in Fig. 3. For clarity, every 10th
species is emphasized by large symbols. For plant names, see
Appendix C.

this separation would leave the similarity of these quad-
rats undetected. Nevertheless, the new edges on higher
temperatures connect these few quadrats to the large
group of sedge-dominated quadrats, which confirms the
integrity of this vegetation type. In terms of species,
the new edge between the floating species (Lemna mi-
nor and Utricularia vulgaris) and dwarf forbs of muddy
habitats (e.g., Veronica anagallis-aquatica) is due to a
special co-occurrence pattern. The periodical intrusion
of water onto the mud surfaces of the young floating
islands sparsely inhabited by dwarf species carries
along the floating species, mainly Lemna minor. These

floating plants can survive on the wet mud, thus causing
the apparent association observed. The fact that this
edge appears only on higher temperatures shows that
this association receives relatively low support. An-
other example is the edge between Lindernia procum-
bens and Cyperus fuscus. In the best arrangement, L.
procumbens is part of the species group characteristic
of dwarf mud vegetation, while C. fuscus primarily
belongs to the species group corresponding to the tall
forb vegetation. C. fuscus is present in both vegetation
subtypes, in the first one as a dominant species, in the
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FIG. 6. One of the most optimal solutions for seriating the aquatic vegetation data set. Symbols for sites are the same as
in Fig. 3. Species numbering is different from that in Fig. 5 and is not shown to avoid confusion. Shading is proportional
to percent cover, from white (0%) to black (100%).

second one as an ‘‘understory’’ beneath the tall forbs.
The edge represents the strong association of the spe-
cies with the dwarf mud vegetation.

Seriation

We examined the Boltzmann distribution with the
seriation criterion on two temperatures, T 5 0.001 and
T 5 0.017. We used 10 000 steps for the burn-in phase,
and then every 10 000th rearrangement was retained
resulting in a total of 10 000 matrices. At temperature
T 5 0.001, 7974 of the rearrangements had the mini-
mum energy value (C 5 161 762.01, one result shown
in Fig. 6) followed by 1857 rearrangements having a
slightly greater energy (C 5 161 762.19). As many as
9990 matrices had energy smaller than C 5 161 763,
and among them 9971 were different. This shows good
mixing and indicates the possibility of large number of
optimal solutions. Remarkably, an iterative greedy al-
gorithm (Podani 1994) performs worse than MCMC.
In three days of computational time, the analyses con-
verged into 100 different solutions, and the best rear-

rangement had an energy of C 5 167 537.4. We must
mention though that the comparison of running times
of the new and old methods is not fair since the old
method was implemented in FORTRAN, and the pro-
gram was run under a WINDOWS XP operating system
(Microsoft, Redmond, Washington, USA) on a 3-GHz
processor. However, the huge differences between com-
putational times (3 d vs. ,1 h) and between the per-
formance of the two methods deserve appreciation.

At temperature T 5 0.017, the smallest energy value
obtained was C 5 161 765. However, the distribution
still shows the main properties of the best rearrange-
ment (see Fig. 7 for the species). Most of the species
have only a limited possibility to be rearranged and
only the rare species have uncertain positions. We
found even lower variability for quadrats (diagram not
shown).

The biological interpretation of results is very sim-
ilar to that of block clustering. Species groups char-
acteristic of strata are distinguishable here as well,
though other species groups like floating species or the
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FIG. 7. The Prd(i, d) distribution (the probability that row i is d positions from the center of the matrix in the Boltzmann
distribution) at temperature T 5 0.017 for species (rows).

group assigned to one of the sites are lacking. At the
bottom of the rearranged matrix (Fig. 6), a mixed clus-
ter appeared in which presumably uninformative spe-
cies are collected. An advantage of block clustering
against seriation is that uncorrelated species are less
influential. Quadrats from each stratum also clumped
closely together; this clumping is even stronger than
what we observed in the best rearrangement after block
clustering. For example, two subgroups of quadrats
from large sedge beds are only joined in block clus-
tering after suboptimal rearrangements had been taken
into account, while in the seriation result all of the
quadrats from large sedge beds appeared in the same
group. An advantage of the seriation approach is that
it provides a plausible mutual correspondence between
species and quadrat groups. Therefore, seriation could
serve as a first approach to finding broad correspon-
dence between quadrat and species groups, while block
clustering results including suboptimal solutions could
provide deeper insight into the strength and pattern of
associations. The gradient implied by seriation has to
be handled with care, though. The transitions along the
gradient have no obvious biological relevance in this
example, except for overlaps between the groups.

DISCUSSION

We introduced a new approach to the rearrangement
of ecological data matrices. Instead of searching for a
single optimal solution, we defined a series of distri-
butions: the Boltzmann distributions of matrix rear-
rangements. In this distribution, the probability of a
matrix rearrangement decreases exponentially with the
deviation of the energy (measure of goodness) from
the energy of the best rearrangement. We showed that
this approach is applicable to unconstrained block clus-
tering and seriation if energy is defined by our rear-
rangement criteria, and there is no doubt that it should

just as well work for other measures as well. Though
it is hard to handle these distributions analytically, we
showed that the MCMC approach allows efficient sam-
pling from these distributions. For both rearrangement
problems, we also introduced statistics efficiently char-
acterizing and visualizing the Boltzmann distributions:
plexus graphs for unconstrained block clustering and
the distance distributions of rows and columns for ser-
iation.

We tested our method on actual ecological data, and
showed that:

1) There are potentially several rearrangements that
are optimal according to a given criterion. A single
optimal solution is less informative than a distribution
of many solutions in which the optimal solutions have
the greatest probabilities.

2) Suboptimal solutions are also useful and reveal
information not conveyed by optimal solutions. Sub-
optimal solutions enable, for example, the recognition
of overlapping groups of species or quadrats and also
generate a temperature-driven ‘‘melting’’ hierarchy of
objects. Unlike in many types of classification and tab-
ular rearrangement results, in plexus graphs no object
is forced into a single group, similar to overlapping
clustering or clumping. An example is Sphagnum
squarrosum, which belongs to a species group asso-
ciated with one of the three sites, but also belongs to
one of the vegetation types.

A further advantage of the proposed method with
respect to biological interpretation is its ability to re-
veal species or their groups which are characteristic
combinations in the sample. Species weakly associated
with other species can be regarded as less informative.
In this way, potential characteristic species can be iden-
tified and the number of species involved in further
analyses can be effectively reduced. However, finding
and interpreting relationships between species groups
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and quadrat groups (vegetation types) require expert
knowledge.

Although our objective was to get a distribution of
rearrangements rather than a single best solution, the
latter can be highlighted from the sampled rearrange-
ments. We showed that our approach can actually out-
perform heuristic techniques both in computational
time needed to get a good solution and in the goodness
of the best solution found. We would like to mention
the high similarity between our approach and a sto-
chastic optimization procedure called simulated an-
nealing (SA; Kirkpatrick et al. 1983). SA is also based
on the Boltzmann distribution but temperature decreas-
es while the Markov chain proceeds, thus freezing the
chain into the best solution. An advanced MCMC tech-
nique inspired by SA is parallel tempering (PT; Geyer
1991, Hukushima and Nemoto 1996). In PT, several
Markov chains run simultaneously, converging to
Boltzmann distributions of the same type but on dif-
ferent temperatures. Stochastic communication be-
tween the chains provides faster mixing for all chains
without significant increases of computational time,
while keeping the convergence for each chain. Since
we suggest investigating the Boltzmann distributions
on several temperatures, PT is the definite choice for
this purpose in the future.

We also showed that finding the best rearrangement
for unconstrained block clustering is NP-complete, and
we conjecture similar results for other matrix rear-
rangement problems. Hence, we can never be sure that
the best solution has been found by any approach, in-
cluding ours. However, a set of suboptimal solutions
also reveals the main properties of the best solution.
Indeed, the Boltzmann distributions on higher temper-
atures almost never contain any optimal solution, how-
ever, the introduced statistics on higher temperatures
were comparable with those on lower temperature.

We did not define any prior distribution of temper-
atures and did not use any prior information on how a
good rearrangement should look like. With such priors,
we would be able to put our work into a Bayesian
modeling framework. Such attempts have already been
made in archaeology, for example, by introducing prior
assumptions on the measurement error (Buck and Sahu
2000) or on dynamics of cultural changes (Halekoh and
Vach 2004). Another potentially interesting approach
is the minimum message length method (Wallace and
Boulton 1968, Dale and Dale 2004), where the objec-
tive is to minimize the sum of the description length
of the prior information and the likelihood. Finding
possible ways to incorporate prior knowledge into our
model is a promising challenge.

Markov chain Monte Carlo methods have been the
basic statistical tools in many fields in biology (Liu
2001, Larget 2004), and their power was also already
shown for some statistical problems in ecology (Zaman
and Simberloff 2002, Miklós and Podani 2004). The
main drawbacks of MCMC are that it requires expert

knowledge in statistics and that general purpose
MCMC software packages are still lacking. With this
paper, we wanted to facilitate the spread of MCMC
approaches in ecological data analysis and to provide
a software package for the techniques introduced here
(Supplement).
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APPENDIX A

A proof demonstrating that the energy problem of matrix rearrangement is NP-complete is available in ESA’s Electronic
Data Archive: Ecological Archives E086-187-A1.

APPENDIX B

A .gif movie showing the change of plexus graphs when temperature is changed is available in ESA’s Electronic Data
Archive: Ecological Archives E086-187-A2.

APPENDIX C

A list of species is available in ESA’s Electronic Data Archive: Ecological Archives E086-187-A3.

SUPPLEMENT

A software package for performing tabular rearrangement via MCMC is available online in ESA’s Electronic Data Archive:
Ecological Archives E086-187-S1.


